$1*(\frac{n}{2}+\log_{2} n) + 2*(\frac{n}{2}+\log_{2} n) + 4*(\frac{n}{2}+\log_{2} n) + 8*(\frac{n}{2}+\log_{2} n) + ... + 2^{k}*(\frac{n}{2}+\log_{2} n)$

$2^k = n \Rightarrow k = \log_{2} n$

$Using \ the \ GP \ formula$

$(\frac{n}{2}+\log_{2} n) *\left \lbrace 1 + 2 + 4 +8 +16 + ... 2^k \right \rbrace$

$\Rightarrow \ (\frac{n}{2}+\log_{2} n)* \left \lbrace 2^{\log_{2} n+1}-1 \right \rbrace $

$\Rightarrow \ (\frac{n}{2}+\log_{2} n)* \left \lbrace n\right \rbrace $

$\Rightarrow O(n^2) $