Awesome q2a theme
0 votes
16 views
$\lim_{x\rightarrow \infty }2[ \sqrt{n+6} \sqrt{n+10}-n]$ find value
in Calculus by (139 points) | 16 views

1 Answer

+1 vote
Best answer

Assuming it as $ \lim_{n→∞} instead\ of\ \lim_{x→∞}$

$\lim_{n→∞} 2(\sqrt{n+6}\sqrt{n+10}−n)$

= $2\lim_{n→∞} (\sqrt{n+6}\sqrt{n+10}−n)$

Multiplying & dividing with $(\sqrt{n+6}\sqrt{n+10}+n)$

= $2\lim_{n→∞} \frac{(\sqrt{n+6}\sqrt{n+10})−n)*(\sqrt{n+6}\sqrt{n+10})+n)}{(\sqrt{n+6}\sqrt{n+10}+n)}$

= $2\lim_{n→∞} \frac{(n+6)*(n+10)−n^2}{\sqrt{n+6}\sqrt{n+10}+n}$

= $2\lim_{n→∞} \frac{(n^2+16n+60)−n^2}{\sqrt{(n+6)(n+10)}+n}$ $(\because \sqrt{a} *\sqrt{b}=\sqrt{a*b})$

= $2\lim_{n→∞} \frac{16n+60}{\sqrt{(n^2+16n+60)}+n}$

Taking out $n$ common

= $2\lim_{n→∞} \frac{n(16+\frac{60}{n})}{\sqrt{n^2(1+\frac{16}{n}+\frac{60}{n^2})}+n}$

= $2\lim_{n→∞} \frac{n(16+\frac{60}{n})}{n(\sqrt{(1+\frac{16}{n}+\frac{60}{n^2})}+\frac{1}{n})}$

= $2\lim_{n→∞} \frac{16+\frac{60}{n}}{\sqrt{(1+\frac{16}{n}+\frac{60}{n^2})}+\frac{1}{n}}$

= $2*16$

= 32

by (926 points)
selected by
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Welcome to GATE CSE Doubts, where you can ask questions and receive answers from other members of the community.
Top Users Jul 2020
  1. Shaik Masthan

    39 Points

  2. pritishc

    10 Points

  3. Charuji24

    9 Points

  4. hiteshpujari

    9 Points

  5. srestha

    9 Points

  6. fazin

    7 Points

  7. divi2719

    7 Points

  8. sthakur369

    6 Points

  9. Richa Agrawal

    6 Points

  10. gaurav2697

    6 Points

7,577 questions
1,785 answers
10,885 comments
90,506 users