Let $G=(V, E)$ be an undirected unweighted connected graph. The diameter of $G$ is defined as: $\text{diam}(G)=\displaystyle \max_{u,v\in V} \{\text{the length of shortest path between $u$ and $v$}\}$ Let $M$ be the adjacency matrix of $G$. Define graph $G_2$ on the same set of ... $\text{diam}(G_2) = \text{diam}(G)$ $\text{diam}(G)< \text{diam}(G_2)\leq 2\; \text{diam}(G)$

asked
Feb 18
in Graph Theory
Arjun
1.5k points
711 views