Awesome q2a theme
0 votes
45 views
Consider the following arguments

$I)\left \{ \forall x\left [ P\left ( x \right )\rightarrow \left \{ Q\left ( x \right ) \wedge S\left ( x \right )\right \} \right ] ,\forall x\left ( P\left ( x \right )\wedge R\left ( x \right ) \right )\right \}\Rightarrow \forall x\left ( R\left ( x \right ) \rightarrow S\left ( x \right )\right )$

$II) \left \{ \forall x\left \{ P\left ( x \right )\vee Q\left ( x \right ) \right \} ,\forall x\left [ \left \{ \sim P\left ( x \right )\wedge Q\left ( x \right ) \right \} \rightarrow R\left ( x \right )\right ]\right \}\Rightarrow \forall x\left \{ \sim R\left ( x \right ) \rightarrow P\left ( x \right )\right \}$

Which of the following are valid?
in Mathematical Logic by (755 points) | 45 views

1 Answer

+1 vote

$I)\left \{ \forall x\left [ P\left ( x \right )\rightarrow \left \{ Q\left ( x \right ) \wedge S\left ( x \right )\right \} \right ] ,\forall x\left ( P\left ( x \right )\wedge R\left ( x \right ) \right )\right \}\Rightarrow \forall x\left ( R\left ( x \right ) \rightarrow S\left ( x \right )\right )$

 

$\forall x\left ( P\left ( x \right )\wedge R\left ( x \right ) \right )$ //This means $P$ and $R$ are true for all values of $x$ then only this statement will be true.

$ \forall x\left [ \sim P \left ( x \right )\vee  \{ \ Q\left ( x \right ) \wedge S\left ( x \right )\ \}\ \right ] $ //Since $P'$ is false so $Q$ and $S$ both have to be true for all values of $x$ in order for this statement to be true.

________________________________________________________________

$\forall x\left ( \sim R\left ( x \right ) \vee S\left ( x \right )\right )$ // since $R'$ is false and $S$ is true for all values of $x$ so this statement would be true for all values of $x$.

Hence 1. is a valid statement.



$II) \left \{ \forall x\left \{ P\left ( x \right )\vee Q\left ( x \right ) \right \} ,\forall x\left [ \left \{ \sim P\left ( x \right )\wedge Q\left ( x \right ) \right \} \rightarrow R\left ( x \right )\right ]\right \}\Rightarrow \forall x\left \{ \sim R\left ( x \right ) \rightarrow P\left ( x \right )\right \}$

 

$ \forall x\left \{ P\left ( x \right )\vee Q\left ( x \right ) \right \}$

$P$ $Q$ $Q'$ $P \vee Q$ $P \vee Q' $
0 0 1 0 1
0 1 0 1 0
1 0 1 1 1
1 1 0 1 1

// since $P \vee Q$ should be true for all values of $x$ so this means the highlighted case should not be there

$ \forall x\left [ \left \{ P\left ( x \right )\vee \sim Q\left ( x \right ) \right \} \vee R\left ( x \right )\right ]$

$R$ $P$ $Q$ $Q'$ $P \vee Q' $ $(P \vee Q') \vee R$
0 0 0 1 1 1
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 0 1 1
1 0 0 1 1 1
1 0 1 0 0 1
1 1 0 1 1 1
1 1 1 0 1 1

So after removing the highlighted case the table becomes

$R$ $P$ $Q$ $Q'$ $P \vee Q' $ $(P \vee Q') \vee R$
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 0 1 1
1 0 1 0 0 1
1 1 0 1 1 1
1 1 1 0 1 1

Since $(P \vee Q') \vee R$ should be true for all values of $x$ hence the highlighted case should not be there.

So after removing that case the table becomes

$R$ $P$ $Q$ $Q'$ $P \vee Q' $ $(P \vee Q') \vee R$
0 1 0 1 1 1
0 1 1 0 1 1
1 0 1 0 0 1
1 1 0 1 1 1
1 1 1 0 1 1

 

_________________________________________________________________________

$ \forall x\left \{  R\left ( x \right ) \vee P\left ( x \right )\right \}$ // In the above table we can see that for all cases $P \vee R$ will be true hence this conclusion is true

Hence 2. is a valid statement.

by (4.1k points)
0

@Satbir

U told

 

Q and S both have to be true for all values of x in order for this statement to be true.

Then how r u concluding "since R′ is false and S is true for all values of x so this statement would be true for all values of x." --------> is valid??

0
see the other statement $P \wedge R$ is true for all values of $x$

$\implies R$ is true for all values of $x$

$\implies R'$ should be false for all values of $x$

From 1st statement we are getting R' is  false and from second statement we are getting S to be true for all values of $x$
0
How r u getting $R'$ false.

$\sim R$ means $R$ is false. isnot it?
0
yes $ \sim R \equiv R'$

....i want to say that R=1 i.e. true for all values of x.

so what will be R' ? it will be 0 i.e. false for all values of x
0

@Satbir

But by only telling S is true, can we say it is for all x??

Because , forall x,  we need to true Q and S both.

right?

0
Yes, $Q$ and $S$ both would be true only when $Q$ is also true for all values of $x$ and $S$ is also true for all values of $x$
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Welcome to GATE CSE Doubts, where you can ask questions and receive answers from other members of the community.
Top Users Jul 2020
  1. Shaik Masthan

    39 Points

  2. hiteshpujari

    9 Points

  3. fazin

    7 Points

  4. srestha

    7 Points

  5. gaurav2697

    6 Points

  6. Venkatesh Akhouri

    6 Points

  7. Meghana518

    6 Points

  8. beastincarnate

    6 Points

  9. athenahermes

    6 Points

  10. bittujash

    6 Points

7,561 questions
1,783 answers
10,869 comments
90,494 users