# Recent questions and answers in Linear Algebra Find the eigenvalues and the eigenvectors of these two matrices: A = \begin{bmatrix}1&4\\2&3\end{bmatrix} and A+I = \begin{bmatrix}2&4\\2&4\end{bmatrix} A+I has the eigenvectors _____ as A. Its eigenvalues are ______ by 1. I have computed the eigen values please help me in determining a relation between them. Is there any formula or theorem I’m missing out on?
Under what condition on y1, y2, y3 do the points (0;y1), (1;y2), (2;y3) lie on a straight line?
Since both the vectors have same direction so the they must not be basis as they are linearly dependent but this link says something else, Please explain Math Stack Exchange – https://math.stackexchange.com/questions/1997469/basis-for-the-set-of-parallel-vectors#:~:text=1%20Answer&text=Yes.,exactly%20the%20span%20of%20v.
The number of different n × n symmetric matrices with each element being either 0 or 1 is: (Note: power (2, x) is same as 2x)
I have a confusion, let's say we have three vectors a,b & c in 2-D space. a & b are linearly independent but c is dependent on a & b. Can't we represent whole 2-D space using a,b & c as (any vector V) V = x*a + y*b +0*c and hence a,b & c form basis. Then how can we say that basis are set of linearly independent vectors. Please tell me where I am going wrong.
Let $M$ be a $n\times m$ real matrix. Consider the following: Let $k_1$ be the smallest number such that $M$ can be factorized as $A.B$, where $A$ is an $n\times k_1$ matrix and $B$ is a $k_1\times m$ matrix. Let $k_2$ ... $k_2 = k_3 < k_1$ (D) $k_1 = k_2 = k_3$ (E) No general relationship exists among $k_1$, $k_2$ and $k_3$
Suppose that $P$ is a $4 \times 5$ matrix such that every solution of the equation $\text{Px=0}$ is a scalar multiple of $\begin{bmatrix} 2 & 5 & 4 &3 & 1 \end{bmatrix}^T$. The rank of $P$ is __________
1 vote
Consider the following matrix.$\begin{pmatrix} 0 & 1 & 1 & 1\\ 1& 0& 1 & 1\\ 1& 1 & 0 & 1 \\1 & 1 & 1 & 0 \end{pmatrix}$The largest eigenvalue of the above matrix is __________.
https://gateoverflow.in/204100/gate2018-26. The above is the link for the question. I am not able to understand the explaination for statement I i.e. the matrix may have an inverse. Can someone provide a proof or a counter example for the specific situation when the eigenvectors are multiples of a single vector the matrix may or may not have an inverse?
1 vote
Let M be a real 4X4 matrix. Consider the following: s1: M has 4 linearly independent eigenvectors s2: M has 4 distinct eigenvalues s3: M is non singular (invertible) Which of the following is true? s1 implies s2 s1 implies s3 s2 implies s1 s3 implies s2 The answer given was s2 implies s1 which is fine. But why not also s1 implies s2?
Does anyone knows the proof of this concept, I am not able to find it. Reference question – https://gateoverflow.in/2013/gate2014-2-47
IF A and B are two matrices such that A.B = A, Will B always be an Identity matrix?
Let A be a 2×2 matrix for which there is a constant k such that the sum of the entries in each row and each column is k. Which of the following must be an eigenvector of A? A.[0 1] B.[1 0] c.[1 1]
1 vote
Let $G$ be a group of $35$ elements. Then the largest possible size of a subgroup of $G$ other than $G$ itself is _______.
The product of the non-zero eigenvalues of the matrix is ____ $\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$
Consider a matrix P whose only eigenvectors are the multiples of $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$. Consider the following statements. P does not have an inverse P has a repeated eigenvalue P cannot be diagonalized Which one of the following options is correct ... I and III are necessarily true Only II is necessarily true Only I and II are necessarily true Only II and III are necessarily true
Let $A$ be $n\times n$ real valued square symmetric matrix of rank 2 with $\sum_{i=1}^{n}\sum_{j=1}^{n}A^{2}_{ij} =$ 50. Consider the following statements. One eigenvalue must be in $\left [ -5,5 \right ]$ The eigenvalue with the largest ... strictly greater than 5 Which of the above statements about eigenvalues of $A$ is/are necessarily CORRECT? Both I and II I only II only Neither I nor II
Let $c_{1}.....c_{n}$ be scalars, not all zero, such that $\sum_{i=1}^{n}c_{i}a_{i}$ = 0 where $a_{i}$ are column vectors in $R^{n}$. Consider the set of linear equations $Ax = b$ where $A=\left [ a_{1}.....a_{n} \right ]$ ... set of equations has a unique solution at $x=J_{n}$ where $J_{n}$ denotes a $n$-dimensional vector of all 1. no solution infinitely many solutions finitely many solutions
Let $u$ and $v$ be two vectors in R2 whose Euclidean norms satisfy $\left \| u \right \| = 2\left \| v \right \|$. What is the value of $\alpha$ such that $w = u + \alpha v$ bisects the angle between $u$ and $v$? $2$ $\frac{1}{2}$ $1$ $\frac{ -1}{2}$
The value of the dot product of the eigenvectors corresponding to any pair of different eigenvalues of a $4-by-4$ symmetric positive definite matrix is ___________
Consider the system, each consisting of $m$ linear equations in $n$ variables. If $m < n$, then all such systems have a solution. If $m > n$, then none of these systems has a solution. If $m = n$, then there exists a system which has a solution. Which one of the following is CORRECT? $I, II$ and $III$ are true. Only $II$ and $III$ are true. Only $III$ is true. None of them is true.
Consider the following matrix: $R = \begin{bmatrix} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125 \end{bmatrix}$ The absolute value of the product of Eigen values of $R$ is _______
If the characteristic polynomial of a 3 $\times$ 3 matrix $M$ over $\mathbb{R}$ (the set of real numbers) is $\lambda^3 – 4 \lambda^2 + a \lambda +30, \quad a \in \mathbb{R}$, and one eigenvalue of $M$ is 2, then the largest among the absolute values of the eigenvalues of $M$ is _______
Two eigenvalues of a $3 \times 3$ real matrix $P$ are $(2+\sqrt {-1})$ and $3$. The determinant of $P$ is _______
Let $A$ be the matrix $\begin{bmatrix}3 &1 \\ 1&2\end{bmatrix}$. What is the maximum value of $x^TAx$ where the maximum is taken over all $x$ that are the unit eigenvectors of $A?$ $5$ $\frac{(5 + √5)}{2}$ $3$ $\frac{(5 - √5)}{2}$
The number of different $n \times n$ symmetric matrices with each element being either 0 or 1 is: (Note: $\text{power} \left(2, X\right)$ is same as $2^X$) $\text{power} \left(2, n\right)$ $\text{power} \left(2, n^2\right)$ $\text{power} \left(2,\frac{ \left(n^2+ n \right) }{2}\right)$ $\text{power} \left(2, \frac{\left(n^2 - n\right)}{2}\right)$
Consider the set of (column) vectors defined by$X = \left \{x \in R^3 \mid x_1 + x_2 + x_3 = 0, \text{ where } x^T = \left[x_1,x_2,x_3\right]^T\right \}$.Which of the following is TRUE? $\left\{\left[1,-1,0\right]^T,\left[1,0,-1\right]^T\right\}$ is a ... is a linearly independent set, but it does not span $X$ and therefore is not a basis of $X$. $X$ is not a subspace of $R^3$. None of the above
Consider the following system of equations: $3x + 2y = 1$ $4x + 7z = 1$ $x + y + z = 3$ $x - 2y + 7z = 0$ The number of solutions for this system is ______________
Let A be a $4 \times 4$ matrix with eigen values -5,-2,1,4. Which of the following is an eigen value of the matrix$\begin{bmatrix} A & I \\ I & A \end{bmatrix}$, where $I$ is the $4 \times 4$ identity matrix? $-5$ $-7$ $2$ $1$
Consider the following system of linear equations ... matrix are linearly dependent. For how many values of $\alpha$, does this system of equations have infinitely many solutions? $0$ $1$ $2$ $3$
In the LU decomposition of the matrix $\begin{bmatrix}2 & 2 \\ 4 & 9\end{bmatrix}$, if the diagonal elements of $U$ are both $1$, then the lower diagonal entry $l_{22}$ of $L$ is_________________.
If the following system has non-trivial solution, $px + qy + rz = 0$ $qx + ry + pz = 0$ $rx + py + qz = 0$, then which one of the following options is TRUE? $p - q + r = 0 \text{ or } p = q = -r$ $p + q - r = 0 \text{ or } p = -q = r$ $p + q + r = 0 \text{ or } p = q = r$ $p - q + r = 0 \text{ or } p = -q = -r$
Let $P = \begin{bmatrix}1 & 1 & -1 \\2 & -3 & 4 \\3 & -2 & 3\end{bmatrix}$ and $Q = \begin{bmatrix}-1 & -2 &-1 \\6 & 12 & 6 \\5 & 10 & 5\end{bmatrix}$ be two matrices. Then the rank of $P+Q$ is ___________ .
Suppose that the eigenvalues of matrix $A$ are $1, 2, 4$. The determinant of $\left(A^{-1}\right)^{T}$ is _________.
Let $Ax = b$ be a system of linear equations where $A$ is an $m \times n$ matrix and $b$ is a $m \times 1$ column vector and $X$ is an $n \times1$ column vector of unknowns. Which of the following is false? The system has a solution if and only if, both $A$ ... system has a unique solution. The system will have only a trivial solution when $m=n$, $b$ is the zero vector and $\text{rank}(A) =n$.
Let $A, B, C, D$ be $n \times n$ matrices, each with non-zero determinant. If $ABCD = I$, then $B^{-1}$ is $D^{-1}C^{-1}A^{-1}$ $CDA$ $ADC$ Does not necessarily exist
In the given matrix $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$ , one of the eigenvalues is 1. The eigenvectors corresponding to the eigenvalue 1 are $\left\{a\left(4,2,1\right) \mid a \neq 0, a \in \mathbb{R}\right\}$ ... $\left\{a\left(- \sqrt{2},0,1\right) \mid a \neq 0, a \in \mathbb{R}\right\}$
In an $M \times N$ matrix all non-zero entries are covered in $a$ rows and $b$ columns. Then the maximum number of non-zero entries, such that no two are on the same row or column, is $\leq a +b$ $\leq \max(a, b)$ $\leq \min(M-a, N-b)$ $\leq \min(a, b)$
Consider a matrix $A= uv^T$ where $u=\begin{pmatrix}1 \\ 2 \end{pmatrix} , v = \begin{pmatrix}1 \\1 \end{pmatrix}$. Note that $v^T$ denotes the transpose of $v$. The largest eigenvalue of $A$ is ____
Let A be the $2 × 2$ matrix with elements $a_{11} = a_{12} = a_{21} = +1$ and $a_{22} = −1$ . Then the eigenvalues of the matrix $A^{19}$ are $1024$ and $−1024$ $1024\sqrt{2}$ and $−1024 \sqrt{2}$ $4 \sqrt{2}$ and $−4 \sqrt{2}$ $512 \sqrt{2}$ and $−512 \sqrt{2}$